
ESUP-Portail: open source Single Sign-On with CAS
(Central Authentication Service)

Pascal Aubry*, Vincent Mathieu†, Julien Marchal†

* IFSIC, University of Rennes 1
pascal.aubry@univ-rennes1.fr

† University of Nancy 2

vincent.mathieu@univ-nancy2.fr, julien.marchal@univ-nancy2.fr

Abstract

The universality of the HTTP protocol seduced developers
for quite long; most applications are web-based today.

LDAP directories saved our users’ brains by making them
memorize only one password, but their fingers are still very
much in demand by all the authentications they need to type,
in practice each time they access an application.

Many solutions for Single Sign-On are already available. We
describe here a free, simple, complete and sure solution: CAS
(Central Authentication Service), developed by Yale
University. CAS has been chosen by the French ESUP-Portail
consortium, which provides a complete and opened solution
to Universities and University-level colleges to offer an
integrated access to their services and information for their
students and staff.

Keywords: Single Sign-On, open-source, authentication.

1 Why do we need Single Sign-On?

Web-based applications (mailers, forums, agendas, other
specific applications) have largely spread over our networks
during the last years. These applications often need
authentication.

The use of LDAP directories allowed a single account for our
users, which is obviously a real improvement. Some issues
however remain:

• Multiple authentications: giving netId/password to each
application is still needed;

• Security: as user accounts are unique, password stealing
is really critical; the security of the authentication process
is essential. Moreover, user credentials should not be
given to applications any more.

• Several authentication mechanisms: some users own
personal X509 certificates [1], which can be used for
authentication. Moreover, even if LDAP is a widely used
standard today, it could at least be replaced by other user
databases; Anyway, abstracting the authentication
mechanism(s) is interesting, for instance to be able to use
mixed authentication.

• Cooperation: transparently accessing resources of one
establishment when only authenticated against another
one is a wish for close institutions, especially in our
educational community.

• Authorization: applications often need to know users’
profiles to allow (or deny) them to perform specific
actions.

The principle of all SSO solutions is to remove authentication
from applicative code. The goal is then to offer a globally
secured software environment:

web browser

app. #1 app. #2 app. #3

without SSO

service

web browser

app. #1 app. #2 app. #3

with SSO

service

Figure 1: The principle of Single Sign-On

SSO mechanisms [2] try to answer these questions using
similar techniques:

• Authentication is centralized to a unique server, the
only machine receiving users’ credentials, through an
encrypted tunnel;

• HTTP redirections are used, from applications to the
authentication server for unauthenticated users, and back
to applications when authenticated;

• Information is passed by the authentication server to
applications during the redirections, thanks to cookies [3]
and/or CGI parameters.

Among the commercial solutions offered to system
administrators and developers, two leaders stand out: Sun
One Identity Server [4] and Microsoft Passport [5].

After having tested several free implementations (the ESUP-
Portail project is based on open-source software only), the
ESUP-Portail SSO group chose CAS (Central Authentication

mailto:pascal.aubry@univ-rennes1.fr
mailto:vincent.mathieu@univ-nancy2.fr
mailto:julien.marchal@univ-nancy2.fr

Service [6], developed by Yale University) for its Single
Sign-On mechanism.

2 The reasons why we chose CAS

CAS is made up of java servlets, and, run over any (JSP spec
1.2 compliant) servlet engine, offers a web-based
authentication service. Its strong points are security, proxying
features, flexibility, reliability, and its numerous client
libraries.

web browser

app. #1 app. #2 app. #3

with CAS

service

web browser

app. #1 app. #2 app. #3 authentication
server

without SSO

user
database user

database
service

netI
d,

pas
sword

Figure 2: A software environment secured by CAS

2.1 Security

Security is insured the following ways:

• Passwords only pass from browsers to the authentication
server, always through an encrypted tunnel;

• Re-authentications are transparent to users, providing
that they accept a single cookie, called the ‘Ticket
Granting Cookie’ (TGC). This cookie is opaque (no
personal information), protected (HTTPS) and private
(only presented to the authentication server);

• Applications know users’ identities thanks to opaque
one-time ‘Service Tickets’ (ST). Those tickets are
emitted by the authentication server, transmitted to
applications by the browsers, and finally validated by the
authentication server (returning the corresponding
identity). This way, applications never see any password
(as it is the case for almost all serious SSO mechanisms).

2.2 Authentication proxying

Classical SSO mechanisms demand a communication
between the browser and the application, which forbids multi-
tier installations, where an application must request a back-
end service needing authentication (for instance a portal
requesting a web service).

CAS v2.0 solves this issue by proposing an elegant way to
propagate authentication without propagating passwords;
dedicated tickets (PGT: Proxy Granting Ticket and PT: Proxy
Ticket) allow third-party applications to get sure of users’
identity. This feature is obviously the strongest point of CAS.

2.3 Flexibility

The package proposed by CAS developers offers a complete
implementation of the authentication protocol, but the
authentication itself (against a user database) is left to the
administrator. We wrote a generic handler which provides
several connectors (LDAP, X509 certificates, NIS domains,
databases) which can be used alone, or together to get mixed
authentication. This generic handler can also been extended
to give system administrators other authentication methods,
such as Kerberos or Active Directory.

2.4 Client libraries

The code handling the basic protocol (apart from proxying) is
very simple to write on the client-side (applications). Client
libraries were provided for Perl, Java, ASP and PL/SQL. We
added a strong (proxy-able) PHP library. These libraries give
a very impressive flexibility to CAS-ify existing applications
by simply adding a few lines of code.

An Apache module (mod_cas) lets web servers authenticate
users for static resources, as client libraries can not be used in
this case.

A PAM (Pluggable Authentication Module [7]) module
(pam_cas) allows the integration of non web-based
applications at a very low level.

2.5 Moreover…

CAS is used by many American Universities, with LDAP or
Kerberos-based authentication. This makes us confident in its
permanence.

At least, CAS can be directly plugged into uPortal [8],
chosen by the ESUP-Portail consortium, on the way to
become a standard for open source portals.

This article shows how Single Sign-On is achieved with
CAS, and focuses on a precise technical issue: CAS-ifying a
webmail (Horde IMP) and an IMAP server (Cyrus IMAP).

3 How CAS works

3.1 Architecture

3.1.1 The CAS server
Authentication is centralized on a unique machine, called the
CAS server. This machine is the only actor knowing users’
passwords. It has a double role:

• Authenticating users;
• Transmit and certify the identities of authenticated users

(to CAS clients).

3.1.2 Web browsers
Web browsers should meet the following requirements to
take advantage of all CAS comfortable features:

• Own an encryption engine to be able to use HTTPS;
• Perform HTTP redirections (access a URL given by

a Location header when receiving 30x responses)
and understand basic Javascript;

• Store cookies, as defined in [3]. In particular, for
security purposes, private cookies should be
transmitted only to the machines that emitted them.

These requirements are met by all classical web browsers, i.e.
Microsoft Internet Explorer (since 5.0), Netscape Navigator
(since 4.7) and Mozilla.

3.1.3 CAS clients
A web application equipped with a CAS client library, or a
web server using mod_cas, is called a CAS client. It delivers
resources only to clients previously authenticated by the CAS
server.

CAS clients are:

• Libraries, corresponding to the most widely used web
programming languages (Perl, Java, JSP, PHP, ASP);

• An Apache module, used in particular to protect static
documents;

• A PAM module, used to perform system level
authentication.

3.2 Basic functioning

3.2.1 Authenticating a user
A non previously-authenticated user (or a user of which
authentication expired) accessing the CAS server is presented
an authentication form, in which (s)he is invited to enter a
netId and a password:

CAS
server

HT
TP

S

web browser
Figure 3: First access of a browser to the CAS server

If netId and password are correct, the server sends a cookie
called TGC (Ticket Granting Cookie) to the browser:

CAS
server

netId
password

HT
TP

S

user
database

web browser

TGC

TGC

Figure 4: Authentication of a browser against the CAS server

The TGC is the user’s passport against the CAS server. Its
lifetime (validity) is limited (typically a few hours). It is the
way for web browsers to get tickets (meant for CAS clients)
from the CAS server, without needing to re-authenticate. It is
a private cookie (never transmitted to web servers but the
CAS server), and protected (requests to the CAS server are
secured). As all the tickets played with CAS, it is opaque (i.e.
contains no information on the user): it is just a session
identifier between the web browser and the CAS server.

3.2.2 Accessing a protected web resource when
authenticated

When accessing a resource protected by a CAS client, the
web browser is redirected to the CAS server. The browser,
previously authenticated, provides the CAS server its TGC:

web browser

CAS
server

HT
TP

S

application

TGC

TGC

Figure 5: Redirection of an unknown browser to the CAS server

On presentation of the TGC, the CAS server delivers a
Service Ticket (ST). It is an opaque ticket (no user
information), and is usable only by the service that required
it. At the same time, the CAS server redirects the browser to
the calling service (the Service Ticket is a CGI parameter):

web browser

CAS server

HT
TP

S

application

ST

ST

TGC

TGC

Figure 6: Redirection of the browser to the calling service after

authentication

The ST is then validated by the CAS client against the CAS
server (thanks to an HTTP request) and the wanted resource
can be delivered to the browser:

web browser

CAS server

HT
TP

S

application

ST

ST

ST

ID

TGC

TGC

Figure 7: Validation of a Service Ticket

Let us remark that all the redirections above are transparent
for the user: he accesses the resource without authenticating,
and without interacting at all.

CAS
server

HT
TP

S

TGC ST

ST

ST

ID

web browser
TGC

application

Figure 8: User view of the CAS redirections

 The Service Ticket (ST) is the browser’s passport against a
CAS client. It is a One-Time Ticket (can not be presented
twice to the CAS server), valid only for the CAS client it was
delivered for, and only for a very short period of time
(typically a few seconds).

3.2.3 Accessing a protected resource when not
authenticated

If the browser was not previously authenticated, it is
redirected to the CAS server, which returns an authentication
form.

When correctly authenticating by submitting the form, the
CAS server:

• Sends the browser a TGC, that will exempt it from
re-authenticating later;

• Redirects the browser to the calling service (the CAS
client), with a Service Ticket.

As you can see, there is no need to be previously
authenticated to access a protected resource: authentication is
automatically demanded the first time a user requests a
protected resource.

3.3 Multi-tier configuration

3.3.1 CAS proxies
CAS multi-tier feature brings the possibility for a CAS client
to access a back-end service under the primarily authenticated
user’s identity. Such a CAS client, able to proxy credentials is
therefore called a CAS proxy. Most used CAS proxies are:

• Web portals, which need to access external
applications (web services [9] for instance) under
users’ identities;

• Webmail applications, which need to connect to an
IMAP server to retrieve email under users’
identities.

In a multi-tier CAS installation, CAS clients do not have
access to the browser’s cookie cache any more, and
redirections can not be used.

3.3.2 2-tier functioning
A CAS proxy, when validating a Service Ticket to
authenticate a user, also enquires a PGT (Proxy Granting
Ticket) from the CAS server:

web browser

CAS
server

application
(CAS proxy)

ST

ST

ID

TGC

PGT

PGT

Figure 9: PGT retrieval by a CAS proxy

A PGT is a CAS proxy’s passport, for a user, against the CAS
server. It is the way for CAS proxies to get tickets (meant for
CAS back-end services) from the CAS server, without
needing to validate a ST. It is an opaque and re-playable
ticket, delivered by the CAS server through a secured request,
to insure its integrity and confidentiality. PGTs’ lifetime is
limited (a few hours, as well as TGCs).

PGTs are for applications the equivalent of TGCs for web
browsers. A PGT allows applications (CAS proxies) to
authenticate a user against the CAS server, and get Proxy
Tickets (PTs are for CAS proxies the equivalent of STs for
web browsers). Proxy Tickets are, as well as Service Tickets,
validated by the CAS server before giving access to protected
resources:

application
(C AS proxy)

web browser

CAS
server

ST

service

TGC

PGT

PT

PTID

PT

PGT

Figure 10: Validation of a Proxy Ticket by a back-end

service

3.3.3 N-tier functioning
It is easy to see the back-end service accessed by the CAS
proxy in 2-tier configuration can be a CAS proxy itself. CAS
proxies can be chained:

C AS proxy #1web browser serviceC AS proxy #2

Figure 11: A chain of CAS proxies

CAS is, at this time, the only free SSO mechanism allowing
such n-tier installations without propagating any user
password.

4 CAS user authentication

The original CAS distribution does not include user
authentication. Authentication classes have to be written by
administrators, and fit to their exact need (some example
classes are provided).

4.1 The GenericHandler class

Developed by the ESUP-Portail project [10], the
GenericHandler class [11] provides the implementation of
many authentication methods: LDAP directories, databases,
NIS, files, NT domains, etc. Furthermore, this class can be
easily extended to fit other needs (Novell, Kerberos, Active
Directory, etc.).

LDAP
directory

databases NIS
domain

X509
certif icates

Kerberos
domain

Windows NT
domain

file

CAS
server

Figure 12: User authentication with ESUP-Portail

GenericHandler

The configuration is done in an XML format: one or more
authentication methods are specified. They will be
sequentially tested until one succeeds.

Because LDAP became a standard for storing and
authenticating users, we show, as an example, how Generic
Handler can be used with an LDAP directory.

4.2 Authentication against an LDAP directory

Two different access modes are proposed, depending on the
internal structure (DIT) of the LDAP directory.

4.2.1 Direct access mode (ldap_fastbind)
ldap_fastbind mode can be used against LDAP directories of
which users’ DN (Distinguished Name) can be directly
deduced from their netId (in practice, directories where users
are stored at the same hierarchical level, in the same OU for
instance).

In this case, CAS tries to connect the directory using the DN
and password provided by the user. Classically, the user is
authenticated if the connection succeeds.

One may use:
<authentication>
 <ldap version="3" timeout="5">
 <ldap_fastbind filter="uid=%u,dc=univ-rennes1,dc=fr" />
 <ldap_server host="ldap.ifsic.univ-rennes1.fr"
 port="389"
 secured="no" />
 </ldap>
</authentication>

4.2.2 Search mode (ldap_bind)
When the DN can not be deduced from the uid,
administrators must use the ldap_bind mode, with which the
user’s DN is searched before attempting a connection. For
instance:

<authentication>
 <ldap version="3" timeout="5">
 <ldap_bind search_base="dc=univ-rennes1,dc=fr"
 scope="sub" filter="uid=%u"
 bind_dn="admin" bind_pw="secret" />
 <ldap_server host="ldap.ifsic.univ-rennes1.fr"
 port="389" secured="no" />
 </ldap>
< /authentication>

4.2.3 LDAP Redundancy
Generic Handler can use redundancy to be more fault-
tolerant: it is possible to specify a list of LDAP servers,
which are considered as replicas.

5 CAS-ifying a web application

CAS-ifying a web application is very easy, thanks to CAS
client libraries.

Three kind of CAS applications exist:
• CAS “simple” clients: they only need to

authenticate users.
• CAS proxies: they need to authenticate users, but

also use tier services. They need to retrieve PGTs
from the CAS server, and later PTs they will
transmit to back-end services to authenticate the
users they act for.

• CAS back-end services: they need to validate PTs
given by CAS proxies and get users’ identities.

5.1 “simple” CAS clients

The principle is to use a function (or method) which will run
the authentication mechanism and return the user’s netId.
This function must perform the following tasks:

• If the user is not already authenticated and no ST is
provided, redirect the web browser to the CAS
server (providing its own URL for coming back
later);

• If the user is not already authenticated and a ST is
provided, validate the ST by using an HTTPS
request to the CAS server. The CAS server should
then return the corresponding user’s netId.

To illustrate the simplicity of the CAS-ification of such a
“simple” CAS client, we show below how a CAS client can
be written in PHP. Of course, in a real application, a client
library, like phpCAS [12] in our case, should be used instead.

5.1.1 Writing a PHP CAS client
If this script (script.php) is called without any parameter, it
redirects the web browser to the CAS server, giving its own
URL as a CGI parameter:
https://cas.univ.fr/login?service=http://test.univ.fr/scrip
t.php

The user authenticates against the CAS server, which
redirects the browser to the calling service, giving a ST as a
CGI parameter. The coming-back URL would be something
like:

http://test.univ.fr/script.php?ticket=ST-2-
uw2KEWinSFeZ9fotZIio

Our script will then try to validate the Service Ticket against
the CAS server, by accessing the following URL:
http(s)://auth.univ.fr/serviceValidate?service=http://test.
univ.fr/script.php&ticket=ST-2-uw2KEWinSFeZ9fotZIio

The CAS server validates the ticket and returns the user’s
netId, in an XML response:
<cas:serviceResponse
xmlns:cas='http://www.yale.edu/tp/cas'>
 <cas:authenticationSuccess>
 <cas:user>paubry</cas:user>
 </cas:authenticationSuccess>
</cas:serviceResponse>

A possible implementation of this script is:
<?php /* PHP simple Cas client */
// localization of the CAS server
define('CAS_BASE','https://auth.univ.fr');

// own URL
$service='http://'.$_SERVER['SERVER_NAME']
 .$_SERVER['REQUEST_URI'];

/** Authenticate against a CAS server
 * @return the user’s netId, or FALSE on failure
 */
function authenticate() {
 global $service;

 // retrieve the ticket
 if (!isset($_GET['ticket'])) {
 header('Location:
'.CAS_BASE.'/login?service='.$service));
 exit();

 // try to validate the ST against the CAS server
 $fpage = fopen (CAS_BASE . '/serviceValidate?service='
 . preg_replace('/&/','%26',$service)
 . '&ticket=' . $ticket, 'r');
 if ($fpage) {
 while (!feof ($fpage)) { $page .= fgets ($fpage, 1024);
 }

 // analyze the CAS server’s response
 if (preg_match('|<cas:authenticationSuccess>|mis',
 $page)) {
 if(preg_match('|<cas:user>(.*)</cas:user>|',
 $page,$match)){
 return($match[1]);
 }
 }

 // validation failed
 return FALSE;
}

if (($login = authenticate()) === FALSE) {
 echo 'failure (Retry).';
 exit() ;
}

echo 'welcome user '.$login'!
'
echo '(logout)';
?>

5.1.2 Using the phpCAS client library
The phpCAS library [12] was developed by the ESUP-Portail
project. Here is the way it can be used:

<?php /* a simple CAS client using phpCAS */
include_once('CAS.php');
phpCAS::client(CAS_VERSION_2_0,'cas.univ.fr',443,'');
phpCAS::authenticateIfNeeded();
?>

<html>
 <body>
 <h1>Authentication succeeded!</h1>
 <p>User is <?php echo phpCAS::getUser(); ?>.</p>
 </body>
</html>

5.2 CAS proxies

The procedure exactly begins as for “simple” CAS clients:
retrieve a Service Ticket.

Next, when validating the ST, an additional parameter is
given to the CAS server: a callback URL. In response, the
CAS server returns:

• The user’s netId (as for an ordinary CAS client);
• A PGT, using the callback URL.

As seen in 3.3.2 (“2-tier functioning”), the PGT will be used
later to authenticate a user against the CAS server and get
Proxy Tickets needed to access back-end services.

Java and PHP libraries mask the complexity of all this when
developing a CAS proxy. Here is, for instance, the way a
CAS proxy can be implemented thanks to the phpCAS
library:
<?php /* a CAS proxy using phpCAS */
 include_once('CAS.php');
 phpCAS::proxy(CAS_VERSION_2_0,'auth.univ.fr',443,'');
 phpCAS::authenticateIfNeeded();
?>

<html><body>
<p>User’s netId: <?php echo phpCAS::getUser(); ?>.</p>
<?php
 flush();
 if (phpCAS::serviceWeb('http://test.univ.fr/ws.php',
 $err_code, $output)) {
 echo $output;
 }
?>
</body></html>

5.3 CAS back-end services

Back-end services are as easy to CAS-ify as “simple” CAS
clients because they do exactly the same job, i.e. validating a
Proxy Ticket (instead of Service Ticket) against the CAS
server.

The back-end service called by the CAS proxy shown before
could be:
<?php /* a simple CAS back-end service */
 include_once('CAS.php');
 phpCAS::client(CAS_VERSION_2_0,'cas.univ.fr',443,'');
 phpCAS::authenticateIfNeeded();

 echo '<p>User is ' . phpCAS::getUser() . '.</p>';
?>

5.4 Precautions to take when CAS-ifying web
applications

5.4.1 Sessioning
Applications should maintain sessions for the CAS
mechanism not to be fired at each request, but only once, for
evident performance issues.

This remark goes for CAS clients and proxies (that should
maintain a session with the browser) as well as for back-end
services (that should maintain a session with the CAS proxy).

5.4.2 Asynchronism
Retrieving a PGT for a user in a CAS proxy is easy, when
using CAS client libraries. Developers should however take
care of possible desynchronizations between the different
sessions of a multi-tier CAS installation.

Let us explain this with an example. A user connects in a web
portal, which will act as a CAS proxy: the user authenticates
against the CAS server, the portal retrieves a PGT for the
user, and a session is set between the portal and the browser.
This session is set to last a few hours.

Let us now imagine that the PGT becomes invalid (expiration
or user logout from another window of the browser). In this
particular configuration, it is impossible for the portal to get
new PTs and thus access back-end services.

This situation should be handled by CAS proxies, for instance
by forcing the disconnection of the user.

5.5 CAS authentication for static web pages

The CAS mechanism can be used to protect static resources
(typically HTML web pages), thanks to the mod_cas Apache
module.

With simple Apache directives, the access to a site (or part of
it) can require an authentication against a CAS server. For
instance, the following directives will redirect users to the
CAS server located at https://cas.univ.fr/cas if no valid ST is
given by browsers:
CASServerHostname cas.univ.fr
CASServerPort 8443
CASServerBaseUri /cas
CASServerCACertFile /etc/x509/cert.root.pem

<Location /protected>
 AuthType CAS
 Require valid-user
</Location>

6 CAS-ifying a non-web application

The main goal of an SSO mechanism is of course to provide a
unique authentication service for web applications, efficient
and simple. CAS offers more by allowing the CAS-ification
of non-web services, such as IMAP, FTP, etc.

In order to do this, these services should use PAM (Pluggable
Authentication Module), as most Unix services do now.

6.1 The PAM pam_cas module

Pam_cas is included into CAS client distribution. It is
powerful and however light (about 300 lines of C, half of
them shared with mod_cas).

It allows a service to authenticate a user by receiving an
identifier (a netId, as usually) and a ticket (instead of a
password). The ticket received by the service is then
validated by pam_cas against the CAS server.

Let us notice that using pam_cas can not be thought outside
of a multi-tier installation: the CAS-ified service must be
accessed by a CAS proxy. Indeed, it is unconceivable to ask a
human being (human user of an FTP service for instance) to
provide a CAS ticket.

Fortunately, PAM modular concept allows us to use pam_cas
in conjunction with other PAM modules. It is possible for a
service to authenticate user in a traditional way like they used
to do (netId and password) or with CAS method (netId and
ticket) at the same time.

The example below shows how this can be done.

6.2 Using pam_cas to CAS-ify an IMAP server

Our goal is here to CAS-ify an IMAP server, to set
connections from a web portal (with Proxy Tickets), while
continuing to accept connections from traditional mail clients
(with passwords).

If the IMAP server is PAM-compliant (which is generally the
case), the PAM configuration can look like:
auth sufficient /lib/security/pam_ldap.so
auth sufficient /lib/security/pam_pwdb.so shadow nullok
auth required /lib/security/pam_cas.so \
 -simap://mail.univ.fr \
 -phttps://ent.univ.fr/uPortal/CasProxyServlet

In this example, authentication will be first attempted against
an LDAP directory, next against the local Unix user database,
and finally with pam_cas: the secret provided is validated
against the CAS server (internally, only if it is ticket-shaped
for evident performance issues).

pam_cas

pam_pwdb

client
application

pam_ldap

LDAP directory

login/password

login/password

/etc/passwd

login/password

client
application

CAS
server

ticket

server
application

login/ticket

Figure 13: Using pam_cas

6.3 CAS-ifying the Cyrus-IMAP server

The IMAP protocol is very particular, and probably the most
difficult to CAS-ify. IMAP clients and mainly webmails have

the odd habit to generate very numerous requests, closing and
re-opening connections very often. This of course leads to
numerous authentication requests against the CAS server.

When using a traditional webmail (on which users
authenticate with their netId and password), the only
consequence is a heavier load for the web server running the
webmail. Within a CAS multi-tier installation, load increase
is supported by the web server running the webmail, but also
by the CAS server.

This is clearly prohibitive, for performance issues, to ask for
a ticket and validate it at each request: as a consequence, a
cache is needed on the IMAP server (to make the PT re-
playable by the webmail).

The implementation of such a cache comes straight with
Cyrus. Indeed, Cyrus IMAP server uses Cyrus-SASL for
authentication; now, Cyrus-SASL can use different
authentication mechanisms (PAM, LDAP, Kerberos, etc.) or
call a Unix daemon, saslauthd.

This daemon, which communicates with Cyrus-SASL thanks
to a Unix socket, proposes a cache mechanism. Thanks to this
cache, the mail client will be able to play the same PT more
than once, because saslauthd will not use PAM once the
ticket is stored in its cache.

CAS-ifying Cyrus-IMAP this way made us save 95% of the
authentication requests (only 5% were really played, i.e.
tickets validated against the CAS server).

pam_cas

pam_pwdb

pam_ldap

sasl

traditional
mail client

Cyrus
imapd

LDAP
directory

login / password

login / password

/etc/passwd

CAS-ified webmail
(IMP + phpCAS)

login / PT

CAS server

PT

web browserST

sasl_authd

cache

Unix socket

Cyrus IMAP server

sasl_authd daemon

Figure 14: CAS-ification of Cyrus-IMAP

6.4 CAS-ifying Horde IMP

Our primary goal was to integrate a webmail product into
ESUP-Portail software, if possible completely integrated
within our SSO. We decided to do it with Horde IMP [13].

At first, IMP was adapted to become a CAS proxy. This was
easily done by using the phpCAS library, as seen in 5.2
(“CAS proxies”). It was then possible to acquire a Proxy
Ticket and make the IMAP server authenticate users, by
validating PTs against the CAS server.

Next, the behavior of the webmail was modified to take into
account the versatility of this new kind of password. Indeed,

PTs are manipulated the same way passwords are, but their
lifetime is limited. In other words, the webmail can use a PT
several times thanks to the IMAP cache, but the PT stored in
the IMAP cache can be erased (because of the garbage
collector of the IMAP cache), or replaced in the cache by
another PT (if another webmail instance is running for the
same user), or simply replaced by the user’s password if the
user concurrently uses a traditional mail client. In this case,
the next connection with the PT would be refused by the
IMAP server. To get round this problem, the webmail was
modified to acquire a new PT from the CAS server, and try to
make an IMAP connection a second time.

You probably guess now that CAS client libraries are not as
simple as we said in 5.1.1 (“Writing a PHP CAS client”).

7 Restrictions and perspectives

We described in this article the strong points of CAS:
• It is an open-source and free product;
• Its security level is very satisfying;
• A CAS server is very easy to set up and configure;
• Web applications are very easy to CAS-ify.

Now we see CAS limits, as well as perspectives to get round
these delicate points.

7.1 CAS brings SSO, nothing else

CAS is proposed as a Single Sign-On mechanism, and we
saw that it can also run at system-level, thanks to pam_cas.
On the other hand, it is strictly limited to user authentication:
it does not (and probably will never) deal neither with
authorizations nor with the propagation of user attributes.

Moreover, user databases are local, at the establishment-level.
Multi-establishments issues are not addressed by CAS.
Recent developments on Sympa [14] show an elegant way to
allow authenticating users from several establishments, by
relying on several CAS servers. However, the most promising
way to make different establishments cooperate with CAS is
certainly the Shibboleth internet2 project [15].

7.2 Performance and fault-tolerance

In a CAS installation, all the web applications depend on the
CAS server. Its availability is critical.

In its current release, load balancing can not be implemented.
Indeed, CAS tickets are stored by the CAS server into
memory, for efficiency and simplicity. This makes impossible
to share between several CAS servers.

In practice, Universities having deployed CAS never
encountered performance issues, certainly because processes
involved are quite light. On the other hand, the absence of
fault tolerance is much more crucial, as the CAS server really
becomes a pivot of the web software suite of an
establishment.

It is of course possible to maintain a sleeping spare server,
which can be used in case of failure, or more simply for
maintenance. Switching between two Tomcat servers behind
an Apache frontal is really easy, and this is solution
recommended by the ESUP-Portail consortium. However,
this solution is not transparent for connected users: all valid
tickets (especially TGCs and PGTs) are lost.

A solution, consisting in storing granting tickets (TGCs and
PGTs) into a database is conceivable. In this case, switching
from one CAS server to another one would have very limited
effects (only STs and PTs would be lost), while preserving
simplicity and thus performance.

8 What about CAS in the future?

We are very confident in CAS. Adopted by the ESUP-Portail
consortium as its SSO software, CAS will in the coming
months be deployed in all the French Universities that chose
ESUP-Portail software. We strongly believe that it can
become a standard.

The ESUP-Portail consortium takes an active part in
popularizing CAS, notably by distributing a CAS server
quick-start, which allows any system administrator to setup
and configure a CAS server in a few minutes.

References

[1] Autorité de certification du CRU, in french,
http://pki.cru.fr

[2] Single Sign-On architectures, Jan de Clercq, RSA2003,
November 2003, Amsterdam,
http://www.rsaconference.com/rsa2003/europe/tracks/pdf
s/implementers_w14_declercq.pdf

[3] Persistent client state (HTTP cookies).
http://wp.netscape.com/newsref/std/cookie_spec.html

[4] Sun One Identity Server. http://www.sun.com

[5] Microsoft .NET Passport: One easy way to sign in
online. http://www.passport.com

[6] ITS Central Authentication Service,
http://www.yale.edu/tp/cas/

[7] Linux-PAM: Pluggable Authentication Modules for
Linux, www.us.kernel.org/pub/linux/libs/pam/Linux-
PAM-html/

[8] JASIG (Java Architectures Special Interest Group),
Evolving portal implementations.
http://mis105.mis.udel.edu/ja-sig/uportal/

[9] Web Services, http://www.w3.org/2002/ws/

[10] ESUP-Portail, http://www.esup-portail.org

[11] CAS GenericHandler, http://esup-
casgeneric.sourceforge.net

[12] PhpCAS, http://esup-phpcas.sourceforge.net

[13] The Horde Project, http://www.horde.org

[14] Authentication and access control in Sympa mailing list
server, Serge Aumont & Olivier Salaun, TERENA2004,
June 2004, Rhodes, http://www.sympa.org

[15] The Shibboleth Project, http://shibboleth.internet2.edu/

Acknowledgements

• Shawn Bayern and Drew Mazurek, for their great
work on CAS.

• The ESUP-Portail SSO group for their feedback and
contributions.

Vitae

• Pascal Aubry formerly played with real-time
systems at ECP until 1993. In successive years he
worked at IRISA on the distribution of synchronous
programs and received his Ph.D. degree in Computer
Science in 1997. Currently at IFSIC, University of
Rennes 1, he manages web-projects. He is part of the
ESUP-Portail project since its beginning in late
2002, involved in web security (SSO,
authorizations) and data storage.

• Vincent Mathieu is in charge of network
deployment and administration at University of
Nancy 2. LDAP expert, he also manages some
internet services. He is the leader of the ESUP-
Portail SSO group.

• Julien Marchal is in charge of email services and
some other network-related web applications at
University of Nancy 2. He is also part of the ESUP-
Portail group, involved in SSO, and communication
services, and leader of the ESUP-Portail uPortal
group.

http://pki.cru.fr/
http://www.rsaconference.com/rsa2003/europe/tracks/pdfs/implementers_w14_declercq.pdf
http://www.rsaconference.com/rsa2003/europe/tracks/pdfs/implementers_w14_declercq.pdf
http://wp.netscape.com/newsref/std/cookie_spec.html
http://www.sun.com/
http://www.passport.com/
http://www.yale.edu/tp/cas/
http://www.us.kernel.org/pub/linux/libs/pam/Linux-PAM-html/
http://www.us.kernel.org/pub/linux/libs/pam/Linux-PAM-html/
http://mis105.mis.udel.edu/ja-sig/uportal/
http://www.w3.org/2002/ws/
http://www.esup-portail.org/
http://esup-casgeneric.sourceforge.net/
http://esup-casgeneric.sourceforge.net/
http://esup-phpcas.sourceforge.net/
http://www.horde.org/
http://www.sympa.org/

