
The Future of the Portal and
uPortal 5

Jim Helwig, uPortal Steering Committee Chair

Emerging Themes

Classic Portals
● 15-20 years of growth
● Multiple tabs, multiple portlets
● Built-in tools
● Locally hosted

Importance of Mobile
Usage of MyUW by device

Dynamic and Fast User Interfaces

Adoption of Common Paradigms

Do More With Less

Content Systems Users Resources

New and Improved Functionality

AngularJS-Portal
● Alternative front end
● Now in Apereo Incubation
● Available now, but will be bundled in uPortal 5
● Based on Material Design

Additional presentation on design and motivation
Beyond Portals: A Next Generation, Action-Oriented Service Delivery Platform for
Rich Campus Applications

https://goo.gl/PKsFQx

https://goo.gl/PKsFQx
https://goo.gl/PKsFQx

Introducing Soffits
● New standard for pluggable content in uPortal
● Alternative to JSR-286 portlets
● Why?

○ JSR-286 was drafted in 2008 -- almost 10 years ago!
○ JSR-286 is fundamentally about 1 click == 1 page
○ JSR-286 portlets must be written in JVM languages, usually Java
○ JSR-286 portlets run in the same Tomcat and Java process and the portal; adding or

updating a portlet requires and build cycle & restart
○ JSR-286 places too many restrictions on information from the container…

■ NO user attribute discovery
■ NO attributes for unauthenticated users
■ NO groups discovery

○ JSR-286 requires too much configuration in portlet.xml (e.g. attributes, groups, caching); if
you want different settings for these items, you must fork the project

How Soffits Work
● Soffits may run in their own process, on their own host; (or they may run in

Tomcat, if you prefer)
● Communication with the container (uPortal) is JSON over HTTP(S)
● There is a data model…

○ PortalRequest -- Information about the user's request to the portal service
○ Bearer -- Information about the user
○ Definition -- Information from the publishing record (portlet-definition.xml) of the soffit
○ Preferences -- Publish-time configuration settings for this soffit

● Data model object are sent as JSON Web Tokens (JWTs) using HTTP headers
● You don’t have to write soffits in Java; but if you do, there are a lot of shortcuts

available (especially with Spring Boot!)
● Sample soffits project: https://github.com/drewwills/soffit-samples
● Alternative Soffit orchastration https://github.com/bpowell/brocker

https://github.com/drewwills/soffit-samples
https://github.com/bpowell/brocker

Better Accessibility
● WCAG 2.0 Level AA accessibility audit
● Guidelines:

○ US - Section 504
○ US - Section 508
○ US - ADA
○ FR - RGAA 3-2016
○ CA - AODA

● Test plan: https://wiki.jasig.org/x/CYBnB

https://wiki.jasig.org/x/CYBnB

Better Accessibility
● Available in uPortal 4.3 (rel-4-3-patches)
● Specific issues:

○ https://issues.jasig.org/browse/UP-4735.
○ https://issues.jasig.org/browse/EMAILPLT-190
○ https://issues.jasig.org/browse/FBP-28
○ https://issues.jasig.org/browse/ETPLT-7
○ https://wiki.jasig.org/display/PLT/EsupSympa

● Thanks in particular to Christian Murphy and Christian Cousquer!

Better accessibility results in a better experience for all!

Improved Internationalization and Localization
● Build into new components
● Reduce need to fork
● Looking for guidance, advice, and assistance!

Improved Build Architecture

Better Documentation
● Co-locate with code
● Easier to create and maintain
● Jekyll, markdown, GitHub Pages
● 100% open source
● Examples

○ uPortal stub http://jasig.github.io/uPortal/
○ AngularJS-Portal http://uw-madison-doit.github.io/angularjs-portal/

http://jasig.github.io/uPortal/
http://uw-madison-doit.github.io/angularjs-portal/

Common Apereo Binaries
● Don’t need to build on each server
● Download and configure
● Separate out what should be modified locally
● Easier to internationalize, localize, and configure
● Fix bugs on branch, contribute back for next release
● Best to do this in the core project, release, and then deploy

● Better yet, make your changes directly in the core project first!

Microservices and Container Packaging
● Easier to create and maintain
● Easier to get started with
● Deploy only what you need
● Easier to deploy into containers like Docker

● Start small for the win!

Working Together

Share early and often
● Discussion lists
● Blogs, personal or https://apereo.github.io/
● Hangouts, webinars, community calls

https://apereo.github.io/

Branch, don’t fork
● Easier in the long run to keep current
● Not separate versions, just separate deployments
● Incorporate local fixes and enhancements back to project
● Better yet, fix and enhance the core project and then deploy locally

Discussion
● What excites you about uPortal 5? What concerns you?
● What are the barriers to more adoption and collaboration?
● What ideas do you have that would make it easier?
● What are your ideas for the future of uPortal?
● ???

Merci beaucoup!
Resources:

● Presentation slides: https://goo.gl/U9R99O
● Presentation notes: https://goo.gl/D5BkW2
● uPortal 5 overhaul: https://wiki.jasig.org/x/GYBfB
● Beyond Portals presentation from Educause: https://goo.gl/6rtVd7

https://goo.gl/U9R99O
https://goo.gl/D5BkW2
https://wiki.jasig.org/x/GYBfB
https://goo.gl/6rtVd7

